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All polar equations of the above four types correspond to conics with the pole as a/the focus

[1] Multiply numerator and denominator of the polar equation by 
b

1
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[2] The eccentricity ( e ) is the absolute value of the coefficient of the trigonometric function in the denominator.
If 1e , the conic is a parabola.
If 10  e , the conic is an ellipse.
If 1e , the conic is a hyperbola.

The numerator ( A ) is the eccentricity ( e ) multiplied by the distance from the pole/focus to the directrix ( p ).

epA  , so
e

A
p  .

If the equation involves cos  in the denominator, then the directrix is vertical ( px  ).
If the equation involves sin  in the denominator, then the directrix is horizontal ( py  ).

If the coefficient of the trigonometric function in the denominator is positive,
the directrix is to the right of ( px  ) or above ( py  ) the pole/focus.

If the coefficient of the trigonometric function in the denominator is negative,
the directrix is to the left of ( px  ) or below ( py  ) the pole/focus.

The directrix is NEVER an axis of symmetry.

Part of the conic lies between the pole/focus and the directrix.
That part of the conic always curves around the pole/focus away from the directrix.

[3] Plot the points corresponding to 
2
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,,

2
,0

  .

These are the x  and y intercepts of the conic.
NOTE: If the conic is a parabola, one of the four points will NOT exist.

The latus rectum passes through the pole/focus, and connects the two points above which are reflections of each
other through the pole/focus.

That is, the two points whose rectangular co-ordinates are negatives of each other.
The other point (points) is (are) the vertex (vertices).

If the conic is an ellipse or a hyperbola:

[4] The center is the midpoint of the vertices. The pole/focus is NEVER the center.

[5] The center is also the midpoint of the two foci.
Double the co-ordinates of the center to get the other focus.

[6] The other latus rectum passes through the other focus and is symmetric to the first latus rectum.
The ends of the other latus rectum share a non-zero co-ordinate with the other focus,
and a non-zero co-ordinate with the ends of the first latus rectum.

[7] Use the vertices and the ends of the latera recta to sketch the conic.



Example: Graphing the conic with polar equation 
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[2] 122 e  hyperbola

pep 26  , so 3p .

Since the equation involves sin  in the denominator,
and the coefficient of sin in the denominator is negative,
therefore the directrix is horizontal and below the pole/focus at 3y .

[3]
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The latus rectum connects )0,6(  and )0,6( .
The vertices are )6,0(   and )2,0(  .



[4] The center is )4,0(
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[5] The other focus is )8,0()42,02(  .

[6] The other latus rectum passes through )8,0(  , )8,6(   and )8,6(  .

[7] Final result
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All polar equations of the above four types correspond to conics with the pole as a/the focus

[1]
Multiply numerator and denominator of the polar equation by 
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The equation then becomes 
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[2]
The eccentricity (
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) is the absolute value of the coefficient of the trigonometric function in the denominator.
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The numerator (
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) is the eccentricity (
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) multiplied by the distance from the pole/focus to the directrix (
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If the equation involves 
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 in the denominator, then the directrix is vertical (
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If the equation involves 
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 in the denominator, then the directrix is horizontal (
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If the coefficient of the trigonometric function in the denominator is positive,




the directrix is to the right of (
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If the coefficient of the trigonometric function in the denominator is negative,




the directrix is to the left of (
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The directrix is NEVER an axis of symmetry.


Part of the conic lies between the pole/focus and the directrix.

That part of the conic always curves around the pole/focus away from the directrix.

[3]
Plot the points corresponding to 
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These are the 
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NOTE: If the conic is a parabola, one of the four points will NOT exist.


The latus rectum passes through the pole/focus, and connects the two points above which are reflections of each

other through the pole/focus.



That is, the two points whose rectangular co-ordinates are negatives of each other.


The other point (points) is (are) the vertex (vertices).


If the conic is an ellipse or a hyperbola:

[4]
The center is the midpoint of the vertices. The pole/focus is NEVER the center.

[5]
The center is also the midpoint of the two foci.



Double the co-ordinates of the center to get the other focus.


[6]
The other latus rectum passes through the other focus and is symmetric to the first latus rectum.



The ends of the other latus rectum share a non-zero co-ordinate with the other focus,



and a non-zero co-ordinate with the ends of the first latus rectum.


[7]
Use the vertices and the ends of the latera recta to sketch the conic.
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Since the equation involves 
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[image: image37.wmf]q


sin


 in the denominator is negative,


therefore the directrix is horizontal and below the pole/focus at 
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The latus rectum connects 
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The center is 
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The other focus is 
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The other latus rectum passes through 
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[7]
Final result
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